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We collaboratively explore novel RF front-end architectures, control and 
software-defined networking (SDN), optimization and resource allocation, 
and ML, in three thrusts and in a top-down manner:

• Thrust I: Spectrum measurements and software-hardware integration 
for interferer mitigation, and spectrum coexistence demonstrations 

using the developed hardware/software;

• Thrust II: Novel 0.4–4 GHz MIMO RX architectures for rapid 
interference detection and N-path sequence-mixing for nulling specific 

interferers while preserving FoV/bandwidth for the main RX;

• Thrust III: Control plane design for spectrum monitoring and 

coexistence integrating SDN and ML techniques.
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Ultra-Low-Power Analog Approximation

• Spectrum sensing can be modeled as correlations of 
spectrum signals with template waveforms (DFT, Fourier, 

wavelet, etc.)

• Develop analog approximation functions that are ultra low-

power and can provide error performance comparable to 
digital multiply-accumulate (MAC) for random sequences
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Integrated Implementation of Analog CMOS Correlator as a High-Speed Spectrum Sensor

• Gen-1 implementation in 65nm CMOS: Capable of correlating two 5 GSa/s sequences with 1,024 samples

• Demonstration of compressive spectrum sensing by correlating with basis sequences assuming sparsity

Geo2SigMap: High-Fidelity RF Signal Mapping Using Geographic Databases

• A framework for RF signal mapping combining three open-source tools: OpenStreetMap (geographic databases), Blender (computer graphics), and Sionna (ray tracing)

• ML-based signal strength prediction using a cascaded U-Net architecture: Model training using synthetic dataset and inference using sparse real-world measurement points
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Sectorized node model and 

the interference model

Capacity-Achieving Scheduling Algorithms in Directional Networks

• We evaluate the capacity of sectorized networks that employ directional antennas at each 
infrastructure node to achieve improved capacity and reduced interference in communication

• We design (i) a general sectorized multi-hop wireless network model and characterize its 
capacity region using matching polytopes, and (ii) a distributed approximation algorithm that 

optimizes the sectorization of each node under a network flow with performance guarantee

• Considered network parameters: Number of nodes (N), sectors per node (K), communicate 

range (R), sector beamwidth width (q), and uniformity of network flow (f)
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RMSE of the predicted RSRP map: (left) with varying number of sparse 

measurement points, and (right) compared to existing baselines

Code and measurement data available on GitHub! https://github.com/functions-lab/geo2sigmap

The approximate sectorization gain as a function of the different network 

parameters, which increases sub-linearly with the number of sectors per node

• Full transceiver IC design and integration with an SDR 
platform for experimental evaluation of spectrum sensing 
using tunable MIMO phased array front ends

• Leveraging ML techniques (e.g., CNN and U-Net) for detecting 
and identifying interference from different (angle, freq) pairs

• Continue our spectrum measurement campaigns and 
incorporate of RAN-side information and telemetry frameworks 
(e.g., srsRAN and NG-Scope) to improve spectrum awareness

Proposed cascaded U-Net architecture (left) and the datasets used for model training and testing (right)

https://github.com/functions-lab/geo2sigmap

