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Project Vision, Objectives, Research Thrusts and Key Approaches

End-to-end Spectrum Efficiency: Instead of merely measuring the spectrum utilization efficiency at PHY/MAC or radio
networks alone, we argue that it is important to quantify spectrum efficiency from the end-to-end application perspective —
thus the notion of end-to-end spectrum efficiency: namely, what is the “utility” of data being transported over radio
networks (with the allocated spectrum resources) to the application?
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Proposed Research Thrusts:

* Thrust 1. Semantics-Oriented Data Refactoring and
Environment/Contextual Learning
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Experiments & Evaluation
Design Principles & Approaches for Maximizing End-to-End Spectrum Efficiency:
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a) Exploiting Application Semantics via Data Refactoring as well as Radio Diversity
to Enable Intelligent Radio Network Decision Making

b) Built-in, Collaborative, Long-Term Continual & Contextual Learning .
c) Intelligent Cross-Layer, Dynamic Resource Allocation and End-to-End Adaptation (e) Multl Modal 5G Measurement Setup

Research Progress — Intellectual Merit: | Research Progress — Broader Impacts & Products:
. Close collaboration with industrial partners such as AT&T,
Cisco, InterDigital

. Integration of 5G/NextG technologies in graduate level
courses at UCSD & UMN

. Developed a novel cross-medium communication system that
extends the RF spectrum underwater, which includes novel
underwater antenna design and passive 3D printed bianisotropic

metasurface to expand spectrum utilization under water . Training underrepresented (women, Black and Hispanic)
. Developed a semantics-aware, fine-grained, cross-layer NextG students

RAN architecture to enhance end-to-end spectrum efficiency . Involving a large group of undergraduate students in
. Built a smart band switching system to select and optimize research (paper co-authors)

. New antenna and 3D printable metasurface design,
extending underwater RF communication range from a few
cm to 29m

. Large commercial 5G measurement datasets; Other open-

band 5G, MIMO, carrier aggregation, SA vs. NSA performance source software artifacts; ~15 research publications

including SIGCOMM, Mobicom, INFOCOM

diverse 5G band spectrum efficiency for best application QoE
. Conducted extensive measurements of commercial 5G networks
in both the US and Europe, including in-depth studies of mid-

Sample Research Results (b) BASS: Smart Band Switching (c) semantics-aware, fine-grained, cross-layer NextG framework
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