Reducing Satellite Interference to Radio Telescopes Using Beacons

Cuneyd Ozturk, Dongning Guo, Randall Berry, Michael Honig, Frank Lind

BACKGROUND

- Radio telescopes (RT) are about 150 dB more sensitive than a GSM phone.
- Strong Radio Frequency Interference (RFI) \Rightarrow saturation or non-linear regime \Rightarrow corrupted data.

PROBLEM

- How can we enable more efficient use of time, frequency and space for both science and broadband access?
 - Fixed Quiet Zones
 - Dynamic Quiet Zones
 - Beacon Approach 3.

SYSTEM MODEL

$$\bullet I_i = \frac{p_i w_t(\theta_i) w_r(\phi_i)}{FSL(d_i)} \xi_i$$

- *1.* $p_i \rightarrow$ satellite transmit power
- 2. $w_t(\cdot) \rightarrow$ satellite antenna pattern (3GPP) TR 38.811)
- 3. $w_r(\cdot) \rightarrow \text{RT}$ antenna pattern (ITU-RA 1631)
- 4. $\theta_i, \phi_i \rightarrow \text{off-axis angles.}$
- 5. $d_i \rightarrow$ distance from the i-th satellite to the RT.
- \rightarrow uncertainty in the interference level. 6. ξ_{i}
- 7. $FSL(\cdot) \rightarrow$ free-space loss.

$$RFI = \sum_{i=1}^{N_{sat}} I_i$$

Outage Probability:

 $P_{out} = Pr\{RFI \ge RFI_{max}\}$ where RFI_{max} is the maximum allowable RFI.

• The satellite link is active if and only if The satellite does not lie in the Sky Quiet Zone,

The radii V and L are taken as design parameters.

- to.

FIXED QUIET ZONES

The satellite does not point to the **Ground** Quiet Zone.

DYNAMIC QUIET ZONES

• Each satellite can autonomously determine the region on the ground where they cannot point

• These regions can change across satellites. • This method requires significantly more computation than the Fixed Quiet Zones.

Beacon Transmitter

- variations.
- Beacon approach can exploit the instantaneous channel reciprocity.
- The beacon power profile may be spread over time, frequency and space.
- - 2. Ultra-wideband signaling: The radio telescope may be needed to turned off during the beacon transmission periods (the large peak-to-average power of the beacon).

• Neither the fixed nor dynamic quiet zones methods capture short-term channel

• Design Considerations:

1. Beacon duty cycle: The beacons should be transmitted frequently enough to capture the time variations.

3. In-band versus out-of-band signaling:

4. Spatial design: Another degree of freedom is how to spread the beacon power across space, i.e., the beacon antenna pattern. **5.** Placement of the beacon transmitters: Beacon transmitters can be located either at or nearby the radio telescope.

nergy periodicall[•]

- **Binomial Point Process.**
- $\xi_i \sim \mathcal{N}(0, \sigma_{dB}^2)$.
- beacon signal.

This work has been supported in part through SpectrumX, the National Science Foundation (NSF) Spectrum Innovation Center, funded via Award AST 21-32700 and operated under Cooperative Agreement with NSF by the University of Notre Dame.

• The network consists of 1000 satellites where their locations are generated according to the

• Deactivation of the satellite links in the quiet zone approach depend only on their locations. • For the beacon approach, on average T_b/T_p fraction of the satellites are listening for the

equency	10.65 [GHz]
vidth	100 [MHz]
nax	$-240 \ [dBW/m^2/Hz]$
altitude	550 [km]
smit power	-8.3 [dBW/MHz]
e satellite antenna	30 [dBi]
am-width	5 [degree]
adio telescope (G_{max})	64 [dBi]
wer (p_b)	10 [mW]
beacon transmitter	32 [dBi]
e satellite (η)	9.6 [dB]
3	5 [dB]
temperature (T_a)	300 [K]
te temperature (T_r)	100 [K]
antenna pattern	ITU-RA 1631 [15]
nna pattern	ITU-RA 1631 [15]
nna pattern	3GPP TR 38.811 [16]

ACKNOWLEDGEMENTS