Operational Data Sharing (ODS) Framework

A coexistence strategy for radio observatories in the broadband era Bang D. Nhan¹, Chris De Pree¹, Matt Iverson², Daniel Dueri², Anthony Beasley¹, Brian Schepis²

¹National Radio Astronomy Observatory - Electromagnetic Spectrum Management, Charlottesville, VA

²Space Exploration Technologies Corporation (SpaceX), Hawthorne, CA

Established by

- FCC *Docket No. 11745*

- Interdepartment Radio

- NRQZ ~ 13,000 sq-mile

Concept

Scientific receivers

~ 34,000 sq-km

Advisory Committee (IRAC)

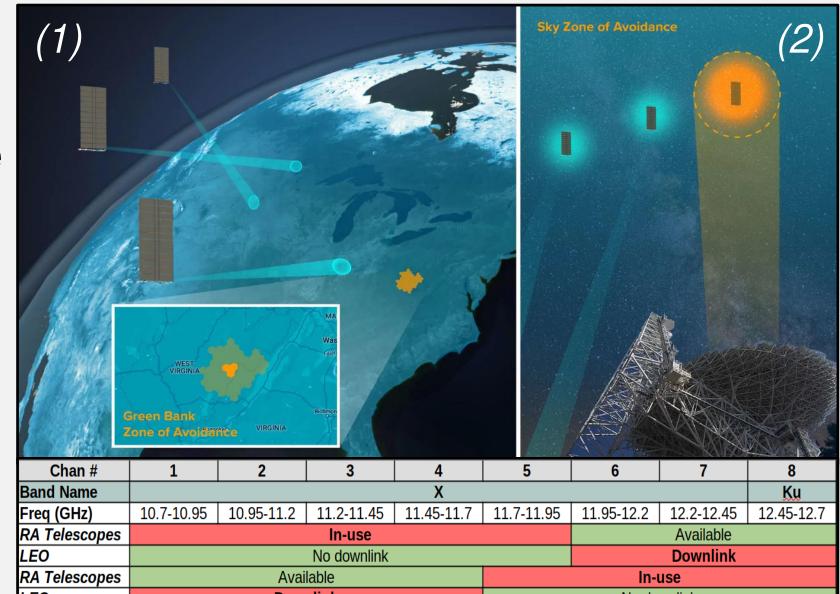
(November 19, 1958)

in **Document 3867/2**

(March 26, 1958)

Possible Avoidance Schemes

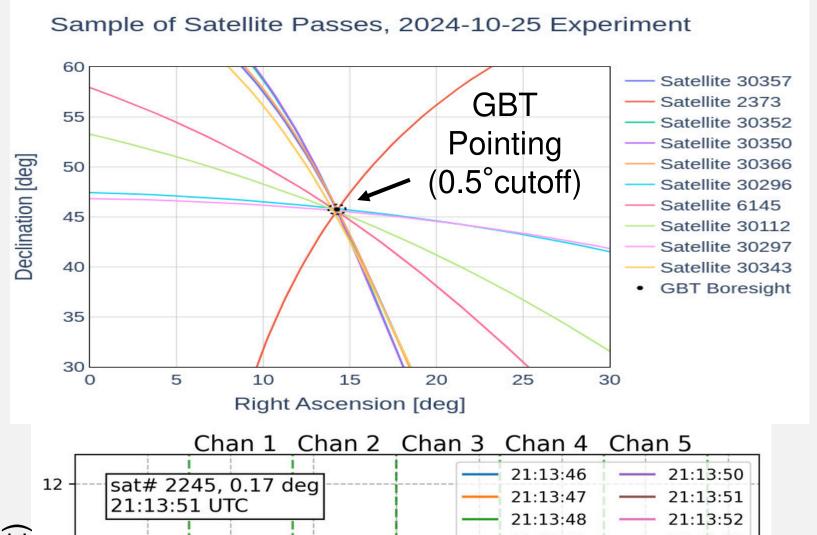
1. Zone avoidance [1,2,3]


- Adaptive beam placement
- When not close to telescope boresight

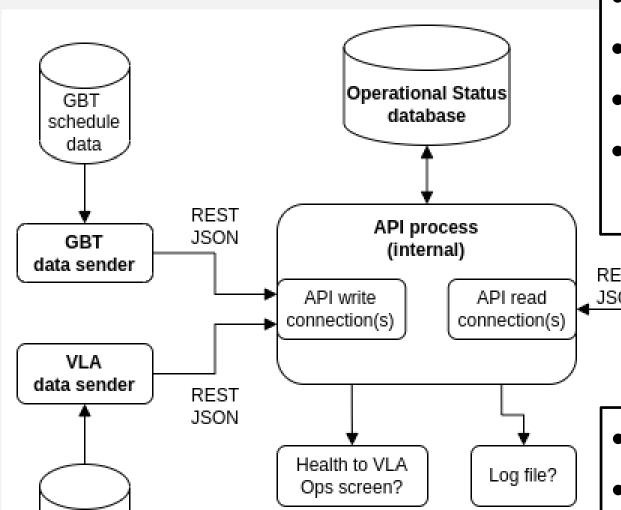
2. Boresight avoidance [5]

Momentarily disabling downlink when close to telescope boresight

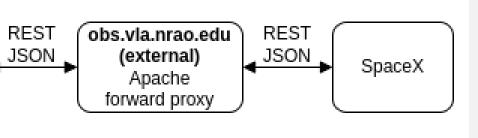
3. Frequency Multiplexing


Downlink only in bands not being used

Precursor Tests with SpaceX


Boresight Avoidance tests:

Scheduled GBT observation at a fixed sky pointing, with and without Starlink's onboard boresight avoidance tasking activated within a coordinated boresight angular separation cutoff (0.5° for these tests, Oct 2023 & Feb 2024) [5]



unit) Boresight avoidance activated (≤ 0.5°) Chan 1 Chan 2 Chan 3 Chan 4 Chan 5 sat# 30343, 0.54 deg 21:04:38 UTC Log(Flux Boresight avoidance deactivated (> 0.5°) 11.2 11.4 11.6 11.8 v [GHz]

Operational Data Sharing (ODS) Frameworks

- Autonomous avoidance informer (REST API)
- Standardized JSON data format
- Queryable by satellite operators
- Telescopes self-report & satellite operators adjust tasking in real-time

- Ongoing development & testing with SpaceX
- Implementing for NRAO's Very Large Array (VLA) and Green Bank Telescope (GBT)

Attribute	Type	Format	Example	Description
site_id	string		vla_D	Identifier of the observatory/instrument. In the example '_D' indicates VLA 'D' configuration. The possible 'site_id's for the VLA are: vla_A, vla_A-to-D, vla_D, vla_D-to-C, vla_C, vla_C-to-B, vla_B, vla_B-to-BnA, vla_BnA, vla_BnA-to-A.
site_lat_deg	number	decimal-degrees +/- DD.D	34.07874917	the latitude of the observatory/instrument
site_lon_deg	number	decimal-degrees +/- DDD.D	-107.6177275	the longitude of the observatory/instrument
site_el_m	number	decimal-meters	2124	the elevation of the observatory/instrument
src_id	string	A.	J1056+7011	identifier of source/target observed during time interval
src_is_pulsar_bool	boolean		false	true = src is a pulsar, false = src is not a pulsar
corr_integ_time_sec	number		3	correlator integration time in seconds (if 'src_is_pulsar_bool'=false)
src_ra_j2000_deg	number	decimal-degrees	70.88181332916666	right ascension of the source/target
src_dec_j2000_deg	number	decimal-degrees	34.68518446944444	declination of the source/target
src_radius	number	decimal-degrees	0.0034	radius of beam around the source/target
src_start_utc	string	date-time	2023-08-16T15:23:47.000541	start time of this observing interval
src_end_utc	string	date-time	2023-08-16T15:26:16.000723	end time of this observing interval
slew_sec	number		130.8	the time taken for the array to reach the source (counted from 'src_start_utc')
trk_rate_dec_deg_per_sec	number	decimal-degrees per second	0	declination tracking rate of src (if not sideral)
trk_rate_ra_deg_per_sec	number	decimal-degrees per second	0	right ascension tracking rate of src (if not sideral)
freq_lower_hz	number	decimal-Hz	26000000000	lower limit frequency used during this interval
freq_upper_hz	number	decimal-Hz	4000000000	upper limit frequency used during this interval
notes	string		inAdv:True	notes that add context to the data

Current & Future Development

- Conduct initial autonomous system testing between SpaceX and VLA & GBT (Summer 2024)
- Continue collaborating with SpaceX & other satellite operators
- Eventually develop into a closed-loop system for mutual avoidance (possibly including dynamical scheduling to avoid crowded sky regions for obs)

VIRGINIA

SpaceX Voluntary Coordination

https://www.starlink.com/map

Introduction

State of research capabilities

Experimental transmitters | Legacy transmitters |

Dynamic spectrum sharing (DSS)

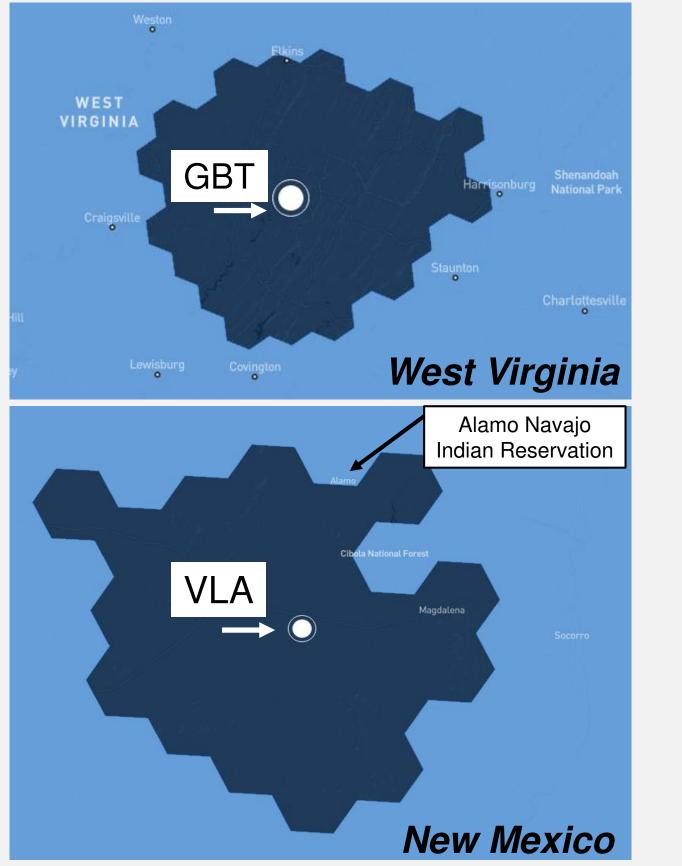
Radio Dynamic Zone (RDZ)

PAWR = NSF's Platforms for Advanced Wireless Research

- Independent & dynamic access methods

- Need a zone management framework

- Control RF energy entering & escaping the zone


National Radio Quiet Zone (NRQZ)

Sugar Grove

Radio Station

NRAO-HQ

National Radio Dynamic Zones (NRDZ)

Fixed address user-terminal request are unavailable for dark blue service cells

Literature Cited

schedule

NRAO RFI memo series: https://library.nrao.edu/rfi.shtml

[1] RFI Memo #120 - Coordinated Starlink User Terminal Testing Near the VLA

[2] RFI Memo #121 - SpaceX-VLA Alamo Pilot Testing

[3] RFI Memo #154 - Coordinated GBT-Starlink Tests (April-July 2023)

[4] Nhan, B.; et al. (2024) - URSI-NRSM, Jan 2024, DOI: 10.23919/USNC-URSINRSM60317.2024.10464916

[5] Nhan, B.; De Pree, C.; Iverson, M.; Gregory, B.; et al. (In Prep) - Toward Spectrum Coexistence: First Demonstration of the Effectiveness of Boresight Avoidance between the NRAO Green Bank Telescope and Starlink Satellites

Acknowledgements

This material is based upon work supported by Associated Universities, Inc./National Radio Astronomy Observatory and the National Science Foundation under Cooperative Agreement No. AST-0836064. This work is also supported by NSF SII-NRDZ (AST-2232159) and SWIFT-SAT (AST-2332422) grants. The authors gratefully acknowledge the contributions by NRAO software, engineering, science support, and project management teams including: Daniel Faes, Thomas Chamberlin, Victoria Catlett, Kevin Ryan, Mark Whitehead, Nathaniel Sizemore, Rich Moeser, Mark Wainright, Randall Arnold, Daniel Lyons, Laura Jensen, Brenne Gregory, Sheldon Wasilk, Aaron Lawson, Daniel Bautista, and Fred Schwab. The authors are grateful for the continuous collaboration by the SpaceX team, including Mike Nicolls, Doug Knox, David Goldman.

bnhan@nrao.edu