Millimeter Wave MMIC Frequency Tunable Butler Matrix Paige Danielson, Prof. Laila Marzall, Prof. Zoya Popović

University of Colorado Boulder Paige.Danielson@colorado.edu

BACKGROUND

A Butler matrix, a discrete multibeam beamforming network, uses couplers and phase shifters to produce different progressive phase shift at the output ports depending on which input is selected [1].

These designs are around 40 GHz which can be used for SATCOM and end user applications, i.e., 5G bands n259 (39.5-43.5 GHz), n260 (37-40 GHz), and MILSTAR satellites (44 GHz).

RESEARCH OBJECTIVE

These Butler matrices (dB) can be used to feed 4 element antennas with minimal deviation from the expected beam steering direction.

Design an on-chip low loss feed network that can be easily integrated with other actives of a millimeter wave front-end.

METHODS AND MATERIALS

- Designed in WIN Semiconductors' 2 mil PP10-20 process, with 0.1µm-gate depletion SEMICONDUCTORS pHEMTs with f_t of 160GHz and 4V operation.
- This platform offers two interconnect metals with air bridge crossovers, precision thin film resistors, and MIM capacitors.
- Simulations done using Cadence AWR Microwave Office with foundry provided PDK models.

[1] R. J. Mailloux, *Phased array antenna handbook*. Artech house, 2017 [2] C.-Y. Chen, et al., "A 36–40 GHz full 360° ultra-low phase error passive phase shifter with a novel phase compensation technique," in 2017 EuMC, 2017, pp. 1245–1248. [3] Y.-H. Lin and Z.-M. Tsai, "Frequency-reconfigurable phase shifter based on a 65-nm cmos process for 5G applications," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2825–2829, 2021. [4] J. Pang, X. Luo, Z. Li, A. Shirane, and K. Okada, "A compact 37-40 GHz CMOS switchtype phase shifter with fine-tuning stage achieving 0.4 dB rms gain error," in 2020 IEEE ICTA, 2020, pp. 5–6.

[5] Q. Zheng, et al., "Design and performance of a wide-band ka-band 5-b mmic phase shifter," *IEEE MWCL*, vol. 27, no. 5, pp. 482–484, 2017.

University of Colorado Boulder

Performance is competitive compared to discrete chip phase shifters around 40 GHz.

ACKNOWLEDGEMENTS

This work has been supported in part through SpectrumX, the National Science Foundation (NSF) Spectrum Innovation Center, funded via Award AST 21-32700 and operated under Cooperative Agreement with NSF by the University of Notre Dame, and in part by Sandia National Laboratories. We thank WIN Semiconductors for MMIC fabrication.

REFERENCES

using ideal phase progression (black), simulated (blue) and measured data (red) at different $V_{ctrl}.$

Static Butler Matrix

Tunable Butler Matrix

Fig. 1: Block diagram of a 4×4 Butler matrix, input selector, and antenna array. The outputs corresponding to two inputs are shown as well as the generated array factor.

Table 1: Performance of Discrete Millimeter-Wave Phase Shifters

Fig. 3: Measured (solid) and simulated (dashed) $\frac{1}{4}$ progression phase shift (PPS) for exciting P1 (top) and P2 (bottom).

Fig. 5: Simulated (top) and measured (bottom) progressive phase shift (PPS) for $V_{ctrl} = -0.2$ V(top), -0.6 V (middle), and -1.0 V (bottom when exciting P1.

Fig. 4: Layout (left) and photograph (right) of the tunable Butler matrix.

- Centered at 44 GHz
- 2 GHz bandwidth

- Operates from 39.8-44.5 GHz
- Constant phase shifter in middle section is replaced by a reflective phase shifter
- One control voltage, V_{ctrl} , at both phase shifters tunes where the progression phase shift is centered

