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BACKGROUND

A Butler matrix, a discrete multibeam beamforming 
network, uses couplers and phase shifters to produce 
different progressive phase shift at the output ports 
depending on which input is selected [1].

These designs are around 40 GHz which can be used 
for SATCOM and end user applications, i.e., 5G bands 
n259 (39.5-43.5 GHz), n260 (37-40 GHz), and MILSTAR 
satellites (44 GHz).

RESEARCH OBJECTIVE

Design an on-chip low loss feed network that can be 
easily integrated with other actives of a millimeter 
wave front-end.

METHODS AND MATERIALS
• Designed in WIN Semiconductors’ 2 mil              

PP10-20 process, with 0.1μm-gate depletion               
pHEMTs with 𝑓𝑡 of 160GHz and 4V operation.

• This platform offers two interconnect metals with 
air bridge crossovers, precision thin film resistors, 
and MIM capacitors.

• Simulations done using Cadence AWR Microwave 
Office with foundry provided PDK models.

Results CONCLUSION
These Butler matrices
can be used to feed 4
element antennas
with minimal
deviation from the
expected beam
steering direction.

Performance is 
competitive 
compared to discrete 
chip phase shifters 
around 40 GHz.
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Fig. 1: Block diagram of a 4×4 Butler matrix, input selector, and antenna array. The
outputs corresponding to two inputs are shown as well as the generated array factor.

Ref. Process Freq. 
(GHz)

Phase 
Shift (∘)

IL(dB) 𝚫
∘

𝚫𝐀 (dB)

[2] CMOS 36-40 360 20.2 2.6 2.6
[3] CMOS 37-40 360 9.3 8 0.6
[4] CMOS 37-40 202 11 4.1 0.3
[5] InGaAs 31-40 360 8.8 4.7 0.6
This InGaAs 43-45 405 2.4 19 0.6
This InGaAs 39.8-44.5 405 5.2 5.6 1.7

Table 1: Performance of Discrete Millimeter-Wave Phase Shifters

Fig. 3: Measured 
(solid) and 
simulated (dashed) 
progression phase 
shift (PPS) for 
exciting P1 (top) 
and P2 (bottom).

Fig. 2: Layout (left) and 
photograph (right) of the 
static Butler matrix.

Fig. 5: Simulated (top) and
measured (bottom) progressive
phase shift (PPS) for 𝑉𝑐𝑡𝑟𝑙 = -0.2 V(
top), -0.6 V (middle), and -1.0 V
(bottom when exciting P1.

Fig. 4: Layout (left) and 
photograph (right) of the 
tunable Butler matrix.

• Centered at 44 GHz 
• 2 GHz bandwidth 

• Operates from 39.8-44.5 GHz
• Constant phase shifter in 

middle section is replaced
by a reflective phase shifter

• One control voltage, 𝑉𝑐𝑡𝑟𝑙 , at 
both phase shifters tunes 
where the progression phase 
shift is centered

Fig. 6: Array patterns from the tunable Butler matrix 
using ideal phase progression (black), simulated 
(blue) and measured data (red) at different 𝑉𝑐𝑡𝑟𝑙.
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