Establishing the Link Between Sensor Capabilities & Spectrum Analytics Performance Karyn Doke, Andrew Okoro, Mariya Zheleva University at Albany, State University of New York, {kdoke, aaokoro, mzheleva} @albany.edu

Background

- Radio frequency spectrum is a scarce commodity.
- Spectrum assignment is full yet certain frequencies are underutilized.

Regulators are forced to:

UNIVERSITY

ATALBANY

State University of New York

- Re-allocate spectrum from existing services.
- Develop mechanisms to share spectrum.
- Requires meaningful data collection.
- Spectrum data collection and analysis is cornerstone for future wireless networking.
- Outcomes feed into critical decisions such as determining the incumbent occupancy in geographic areas.

Problem: Sensor imperfections or configurations will affect data quality.

Solution: Develop VIA, a framework that quantifies spectrum data fidelity based on sensor properties and configuration.

RT

Data Collection

To evaluate VIA: collect and curate a large dataset of 1800 spectrum scans:

- Controlled indoor/outdoor
- Commercial FM radio/TVWS
- Focus on line of sight

				_
latform	SDR	SDR-HOST Link	Sample Rates (Mbps)	
L-Pi	RTL2832U	USB 2.0	1,2,3	
L-Laptop	RTL2832U	USB 3.0	1,2,3	
L-PC	RTL2832U	USB 3.0	1,2,3	
RP-Laptop	USRP-B210	USB 3.0	1,2,4,8,12,16,20,24,28,32	
RP-PC	USRP-B210	USB 3.0	1,2,4,8,12,16,20,24,28,32	

FCC Spectrum Allocation Chart]

RX Gain (dB) 24,30,40,50,56 24,30,40,50,56 24,30,40,50,56 38,40,50,60,70,76 38,40,50,60,70,76

Methodology

VIA takes as an input a spectrum trace and the sensor configuration, and benchmarks data quality along three vectors:

- Veracity: quantifies data retention in a spectrum scan.
- Intermittency: quantifies the effect of the temporal. persistence of sweep-based spectrum scans.
- **Ambiguity**: quantifies the likelihood that transmitter samples in a spectrum scan might be confused with noise.

Left: Data veracity across the five platforms with increasing sampling rate. **Middle:** Hop delay across five platforms. **Right:** Ambiguity of the collected traces as a function of the receiver gain.

Showcasing the effects of VIA on application performance.

Effects of VIA on transmitter detection (TD) accuracy. Left: accuracy deteriorates as veracity decreases. **Middle**: accuracy deteriorates as ambiguity increases. **Right**: accuracy deteriorates as hop delay increases.

Evaluation Setup

Evaluate VIA's ability to predict application performance.

- *Prediction models* (linear regression (LR), neural network (NN)).
 - Input: VIA Vector
 - **Output**: accuracy target spectrum analytic task
- Spectrum analytic task: • Transmitter Detection (TD)
- Occupancy Detection (OD)
- Report mean squared error (MSE) common metric across both models.

sensing, M. Zheleva, T. Larock, P. Schmitt, and P. Bogdanov. IEEE INFOCOM 2018.