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Summary

The 5G mmWave band allocated in the 26 GHz spectrum referred to as 3GPP band n258 has generated anxiety and concern in the meteorological data forecasting community. This . e
issue stems from 5G transmissions impacting the observations of passive sensors on weather satellites used to detect the amount of water vapor in the atmosphere, which in turn / S
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affects weather forecasting and predictions. To this end, the proposed research project aims to tackle this issue by characterizing the impact of 5G transmissions on weather data C% {»“W% W —
measurements and prediction, and then design cross layer mitigation strategies needed to enable coexistence between 5G services and weather prediction, as well as improved v/) e

weather prediction algorithms. The project will lead to algorithm designs, reference architectures, and testbed experiments that will provide pointers to engineering methodology | g
for the design of spectrally and system power-efficient 5G/B5G networks that can peacefully coexist with passive weather sensors. It will also enable the development of improved ‘ /i;'»';;s;g.‘;‘/@ 3\/ ‘ U sosmm
weather forecasting algorithms that are cognizant of the potential impact of unintended interference. Y
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Unintended 5G Leakage

Research Progress

Spatio-Temporal Impact of RFI from 5G mmWave on Weather Forecast

Level of Contamination in Brightness Temperature @ 23.8 GHz
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Fig. 1 5G mmWave adoption growth rate Fig. 2 Predicted number of base stations in each county Fig. 3 AMSU-A observations from Metop-A, NOAA-15, 16, and 18 Fig. 4 Predicted RFl in terms of induced noise in brightness Fig. 5 12-hour forecast of accumulated total precipitation
predicted using Gompertz model for ngp = 15 bit/s/Hz/BS in years 2025 and 2040 satellites depicted as blue circles. Similar to Fig. 2(b) is in the temperature (contamination) for PRSFI = —175 dBW and without any RFI, (b) deviation in accumulated total precipitation
background. Nsp = 15 bit/s/Hz/BS in year (a) 2025, and (b) 2040 forecast for PgFI = —175 dBW, ng, = 15 bit/s/Hz/BS, and year
2040
d Assuming that the temporal trend of 5G mmWave adoption can be somewhat similar to the growth patterns of broadband adoption
because of their advantages compared with predecessors [1], the future base station deployments can be predicted using diffusion of a
new technol model train n br n ion . (Fig. 1 _ ] _
ew technology model trained on broadband adoption data. (Fig. 1) 200 o Year—2030 Year—2040 /.
O The spatio-temporal distribution of base stations can be predicted using the estimated total demand and certain spectral efficiencies 72 L
(nsp) only for counties classified as metropolitan or dense urban. (Fig. 2) =07 1
;\5 12.5 A .
O Aggregated interference power is estimated for each observation using geo-spatial data analysis and aggregation weights calculated W 1001
based on area covered by satellite observations. (Fig. 3) S s
Q Interference power received by the AMSU-A radiometer from a single base station (Pgg;) can vary depending on the transmitted power, 07 —e— 1., =7 bitjs/Hz/BS —e— 1., =7 bitjs/Hz/BS —e— 1., =7 bitjs/Hz/BS
orientations of the satellite’s receiver and base station’s transmitter, filtering response, and atmospheric attenuation. 2] Nsp = 15 bit/s/Hz/BS | Nsp = 15 bit/s/Hz/BS ] Nsp = 15 bit/s/Hz/BS
0041 @ ® —8— nsp =25 bit/s/Hz/BS || —8— nsp =25 bit/s/Hz/BS || —8— nsp =25 bit/s/Hz/BS
A parametric study IS conducted for a wide range of =210 to —165 dbW for PligFI [2], and 7 to 25 bit/s/Hz/BS for Nsp ~210 —205 —200 —195 —190 —185 —180 —175 —170 —165 —210 —205 —200 —195 —190 —185 —180 —175 —170 —165 —210 —205 —200 —195 —190 —185 —180 —175 —170 —165
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The induced noise in brightness temperature can be estimated using the aggregated interference power received by the radiometer (6T Fig. 6 Mean absolute percentage error of accumulated total precipitation forecast versus Prg, for different spectral efficiencies and
= P4, /kB), where B is the channel bandwidth and k is the Boltzmann constant. (Fig. 4) deployment year
d Modeling of 5G mmWave leakage impact on prediction of rainfall and other atmospheric parameters using the open-source packages of
Weather Research and Forecasting (WRF) and Data Assimilation (WRFDA) for the data set of “Super Tuesday Tornado Outbreak”
happened in Feb. 2008. (Figs. 5 and 6)
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Radio Resource Allocation
d Downlink of SISO system with transmitters using O Minimize total transmit power subject to bandwidth, rate, and filtenna d Modeling the leakage function
filtennas constraints . . . .
O Bandwidth allocation decreases with increased leakage suppression
4 Filtennas with [ varactor stages transmitting to n 1 Optimal power and bandwidth allocation via iterative waterfilling to . -
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3. The blue lines correspond to user 1 and red lines correspond to user 2.
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RFl/bias-informed weather observations Coexistence”, (2024) IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), May 2024, Washington, DC

Studying the impact using the state-of-the-art operational models
using Joint Effort for Data Assimilation Integration (JEDI) and Unified
Forecast System (UFS)
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