Electronically-Reconfigurable Surfaces for Improved
Coexistence Between Radio Astronomy and
Satellite Communications Systems
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Dynamic Pattern Control Using Rim-Mounted Surfaces Background
Broadband sources mean Radio astronomy is impacted by emerging low-Earth
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Flat-Panel “Outrigger” Implementation concept
unit cell
These surfaces can be - - design
implemented as flat panels
added to existing reflector .
systems. Surfaces need not WO I'kS in P I'OQ ress
be conformal or continuous in . )
any particular way. Incomplete  * Subreflector implementation
aperture merely limits * Analysis of systematics introduced into radio astronomical observations; e.g.,
minimum angle from main cross-polarization, artifacts from null tracking
lobe for effective nulling. * Network-level implications: How can this actually be used to manage

coexistence between satellite constellations and radio telescopes?
» Additional speed-up of computation; e.g., element state “chunking”
« Single-panel reflectarray nulling demonstration (U. Toronto)
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