Dynamic Wireless Resource Management and Transceiver Adaptation for Efficient Spectrum Utilization and Coexistence

Grant 2029027

Yu-Chien Lin, Prof. Zhi Ding, University of California-Davis

Massive MIMO and CSI Feedback in FDD

RB:

□ High capacity Strong robustness **Reduced** latency □ Higher efficiency Downlink signal and CSI in massive MIMO at *k*-th $y_{\text{DL}}^{(k)} = \mathbf{h}_{\text{DL}}^{(k)_H} \mathbf{w}_{\text{DL}}^{(k)} s^{(k)} + n_{\text{DL}}^{(k)}$ (1)

> $\mathbf{H}_{\mathrm{DL}}^{\mathrm{SF}} = \begin{bmatrix} \mathbf{h}_{\mathrm{DL}}^{(1)} & \cdots & \mathbf{h}_{\mathrm{DL}}^{(\kappa)} \end{bmatrix} \in \mathbb{C}^{N_b \times \kappa}$ (2)

Excessive pilots and **UE feedback overhead** for DL CSI acquisition at gNB: Need feedback/recovery.

Leveraging FDD reciprocity (C1): FDD: $\mathbf{h}_{III} \times = \mathbf{h}_{DI}$ TDD: $\mathbf{h}_{UL} = \mathbf{h}_{DL}$

CSI reciprocity in FDD? Multipaths/scatters lead to angular and delay reciprocity between \mathbf{h}_{IIL} and \mathbf{h}_{DL}

Evidence of FDD "mag" reciprocity

Low-complexity, scalable encoder (lightweight) Low correlation

(C3, C5):

Problems of existing CSI feedback

- ... Some correlation
- Model size $\propto N_h^2$
- Scalability: fixed input size & compression ratio

SCEnet [2023]: scalable, light-weight CSI feedback:

CSI Compression and DNN:

CSI Compression and Recovery by Exploiting Sparsity Sparse transform: $\mathbf{H}^{AD} = \mathbf{F}_{A}\mathbf{H}^{SF}\mathbf{F}_{D}^{H}$ (3) $\mathbf{H} = \mathbf{H}^{\mathrm{AD}}\mathbf{T} = \mathbf{H}^{\mathrm{AD}}\begin{bmatrix}\mathbf{I}_{N_t \times N_t}\\\mathbf{0}\end{bmatrix} \in \mathbb{C}^{N_b \times N_t}$ (4)

AE-based CSI feedback: **CSI = Image**?

FDD-reciprocity Aided DNN Recovery (C1):

FDD-reciprocity Aided Pilot Reduction (C2):

BSdaulNet [2023], FDD reciprocity aided pilot precoding:

	Y Y Y Y Y Y Y	FCDS Block Reduced by 2 FCDS Block CR = 16	-) Decod for CR= Decod for CR=	3 3 3 3 3 3 3 3 3 3			Co Co Re	nv2D (1,3) with a nv2D (1,3) with a shape (+ Dense)	(K, N _t /2) (K*N stride2 (1,1) + Leak strides (1,2) + Tanh	?, 1) V _{tr} /2) yReLU
YYY YYY YYY <i>K</i> = 8 fo	YYYYY YYYYY Y <mark>YYYY</mark> r an 8x4 UPA	L	CR	Scen.	K O	SCE	net+	IZ CA	CsiNet	CsiNet
	107	· · · · · ·	3	Ind	K=2	K=4	K=8	K=64	-SM -29.7	-PM -29.8
	10 ⁶ × 1	6 X 32 Y 2787600	2	Out.	-17.8	-16.3	-16.1	-19.8	-18.9	-18.8
	leters	03870	4	Ind.	-31.7	-32.0	-31.9	-31.5	-26.0	-25.9
	Jaran	SCE encoder	-1	Out.	-13.6	-13.3	-12.6	-14.7	-15.3	-14.5
		 CsiNet-SM encoder CsiNet-PM encoder 	8	Ind.	-20.7	-21.8	-22.2	-24.3	-20.3	-19.1
	Z Y 1744	X 64	0	Out.	-11.5	-11.0	-10.6	-12.7	-12.3	-11.2
	X1 Y 694	¥ 324	16	Ind.	-12.8	-12.3	-11.9	-15.4	-13.0	-12.0
	$10^2 \frac{10^2}{0} 10 20$	0 30 40 50 60	70	Out.	-10.3	-9.7	-9.5	-11.5	-10.2	-9.2
		Subarray width (K)								

Training-free & model-driven light models (C4):

Additional problems of existing CSI feedback

- Sensitive to CSI delay profile
- Cost of model retraining
- Overkill using large model

A low-complexity **training-free** generic encoding

- depends on its delay sparsity &
- irrelevant to its delay profile

Architecture Summary Encoder (UE): $\mathbf{H} \rightarrow Q(\mathbf{q})$

Decoder (gNB): $Q(\mathbf{q}) \rightarrow \mathbf{H}$ e.g., CsiNet [Wen et al. 2018]

Challenges:

[C1]: Outdoor CSI Recovery Accuracy [C2]: Limited Pilot Resource [C3]: High complexity & model size [C4]: Cost of model retraining (mobility) [C5]: Inflexible size & compression ratio

CSI matrix -frequency domain 2D-IDFT* CSI matrix in angle-delay domair Encoder UE Feedback gNB Decoder Recovered CSI matrix in angle-delay

domain

Markovnet

eedback

[2021]:

Our Contributions

[R1] FDD-reciprocity Aided DNN Recovery: C1 [R2] FDD-reciprocity Aided Pilot Reduction: C2 [R3] Temporal Correlation Aided DNN Recovery : C1 [R4] Low-complexity, scalable encoder: C3, C5 [R5] Training-free & model-driven light models: C4

Fading CSI under Mobility (C1):

Switch ZR [2023]: scalable, non-training CSI feedback

		-				
	 FISTA-Net trained by Indoor 					
-Crnet (DCT)	CsiNetPro (DCT)	- DCT-ZR	 Switch ZR (4 transforms) 			
3GPP Type II	-OMP	CoSaMP	CsiNet (DCT)			
ISTA	FISTA	LASSO	3GPP Type I			

Publications:

[R1] Y. -C. Lin, Z. Liu, T. -S. Lee and Z. Ding, "Deep Learning Phase Compression for MIMO CSI Feedback by Exploiting FDD Channel Reciprocity," IEEE Wirel. Comm. Lett., 10(10): 2200-2204, Oct. 2021.

[R2] Y. -C. Lin, T. S. Lee and D. Zhi. "Exploiting Partial FDD Reciprocity for Beam Based Pilot Precoding and CSI Feedback in Deep Learning," under review,

Abbreviations:

- MIMO: Massive Input Massive Output
- CSI: Channel State Information
- FDD: Frequency-Division Duplexing
- UE: User Equipment
- DL: Downlink
- UL: Uplink
- DNN: Deep Neural Network
- AE: Autoencoder

IEEE Trans. Wirel. Comm.

[R3] Z. Liu, M. del Rosario and Z. Ding, "A Markovian Model-Driven Deep Learning Framework for Massive MIMO CSI Feedback," IEEE Trans. Wirel. Commun., vol. 21, no. 2, pp. 1214-1228, Feb. 2022

[R4] Y. -C. Lin, T. S. Lee and Z. Ding, "An Efficient and Scalable Deep Learning Framework for Dynamic CSI Feedback under Variable Antenna Ports," under review, IEEE Trans. Wirel. Comm.

[R5] Y. -C. Lin, T. -S. Lee and Z. Ding, "Training-free Model-driven Lowcomplexity Models for Channel State Feedback in Massive MIMO FDD System," submitted to GLOBECOM 2023.

[R6] M. del Rosario and Z. Ding, "Learning-Based MIMO Channel Estimation Under Practical Pilot Sparsity and Feedback Compression," IEEE Trans. Wirel. Commun., vol. 22, no. 2, pp. 1161-1174, Feb. 2023.

[R7] Z. Liu, M. del Rosario, X. Liang, L. Zhang and Z. Ding, "Spherical Normalization for Learned Compressive Feedback in Massive MIMO CSI Acquisition," IEEE ICC Workshops, Dublin, Ireland, 2020, pp. 1-6

[R8] Y.-C. Lin, T.-S. Lee and Z. Ding, "Deep Learning for Partial MIMO CSI Feedback by Exploiting Channel Temporal Correlation," in Asilomar Conf., Pacific Grove, CA, USA, 2021, pp. 345-350.