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1. Overview

Challenges: General mathematical framework to integrate new technologies, e.g. UAVs and RIS, and utilize the new

degrees of freedom for resilient coexistence of communication and radar over shared spectrum.

Observation: Avoiding interference between users at all times is too conservative in the wake of increasing demand

for throughput and dual communication and sensing functionality.

Solutions: A new paradigm in which we move from hard deterministic constraints to stochastic schemes with desired

low probability of harmful interference. Developing a stochastic optimization framework for resilient spectrum sharing

in a communication network that includes new technologies like RIS and UAV. Extending the framework to include

coexistence of communication and radar.

2. UAV Corridors in Cellular Networks

Goal: Optimize the average SINR across both

UAVs and terrestrial ground-users.

Performance Function:

ΦMP(V ,Θ,ρ) =
∑N

n=1

∫

Vn
γ
(n)
MP(q;Θ,ρ)λ(q)dq,

s.t. ρn ≤ ρmax ∀n ∈ {1, · · · , N},

where ρn is the BS n’s transmission power and

γ
(n)
MP(q;Θ,ρ) = − log

[

µ +
1

(SINR
(n)
lin

(q;Θ,ρ) + ν)

]

.

Figure: Illustration of a cellular network with downtilted and uptilted BSs providing
coverage to ground users as well as UAVs flying along corridors (blurred gray).
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Networks for UAV Corridors via Quantization Theory,” Revision submitted,
Apr. 2024.

Figure: Optimized cell partitioning of GUEs and UAVs (µ = ν = 0.1).

Figure: Optimized vertical tilts θ∗i for: GUEs only (α = 1, green triangle), UAVs only
(α = 0, blue circle), and both (α = 0.5, red cross).

Figure: CDF of the SINR (dBm) at UAVs (dash-dash) and GUEs (solid) when the
network is optimized for GUEs only (α = 1), UAVs only (α = 0), and both (α = 0.5).

3. Dual-Functional Radar-Communication

Beamforming with Outage Probability

Constraints

System Model: K single-antenna users, a base

station with N antennas, and imperfect channel

state information: Ck = E[hkh
H
k ] = Ĉk + Ek

Objective Function: We aim to find K

beamformers for minimizing the mean square error

of the achieved and the ideal sensing beampattern:

L(R, α) =
1

L

L
∑

l=1

[

αφ(θl)− a
H(θl)Ra(θl)

]2
,

with the equal per antenna power constraint and a

probability of outage constraint for each user:

[R]n,n =
PT

N
, ∀n ∈ {1, . . . , N},

Pr[SINRk ≥ γk] ≥ 1− pk ∀k ∈ {1, . . . , K},

where L is the number of grids, φ(θ) is the desired

beampattern at angle θ, α is a scaling factor, a(θ) is

the steering vector, and R is the transmit waveform

covariance.

Solution: Write the probabilistic constraints in

terms of the error function and solve a semidefinite

programming (SDP) with a penalty term that

ensures rank-1 solutions.

4. Stochastic Optimizations and Approximate Solutions

Dynamic spectrum allocation: Optimally choose a string (sequence) of spectrum allocation

policies to maximize a desired spectrum usage utility function over time. The problem can be

transformed as a string-optimization problem:

maximize f (S)

subject to S ∈ T

where f is the utility function that we wish to maximize (e.g., expected throughput or negative

expected latency), T is the set of all permissible strings of spectrum allocation policies over time

horizon of K allocation steps. An element of T is a sequence of policies.

A policy is a posterior density over the action space (permissible spectrum allocations) given the

current state of the network (current allocations and (probabilistic) interference constraints).

Greedy strategy: Determining the optimal string of policies becomes computationally intractable

with increasing size of state/action space and optimization horizon. Therefore, we often have to

resort to approximate solutions. The most common approximation scheme is the greedy strategy, in

which we sequentially select the policy that maximizes the increment in the utility function at each

step. But how good is the greedy scheme relative to the optimal scheme?

Performance bound: We have derived a ratio

bound for the performance of greedy scheme relative

to the optional scheme. The bound guarantees that

the greedy scheme achieves at least a factor of β of

the optimal scheme.

f (GK)

f (OK)
≥ β, with β =

f (GK)
∑K

k=1maxs∈S(Gk−1) f (s)
.

B. Van Over, B. Li, E. K. P. Chong, and A. Pezeshki,

“On Bounds for Greedy Schemes in String Optimization

based on Greedy Curvatures,” submitted to IEEE CDC

2024, Mar. 2024 (invited paper).

Derivation of the bound does not require

submodularity of f and β is easily com-

putable.

Figure: A DFRC system withK downlink communication users and a radar directions of interest
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Figure: 100 Monte Carlo simulations of (Left) Beampattern for 2 users, N = 5 antennas,
pk = 0.02, and different values of SINR threshold; (Right) Beampattern MSE for pk = 0.001
and different values of error in channel estimation

5. Outreach Activity

Mini-symposium on Data-Driven Op-

timization of Spectrum Sharing Net-

works, held at Duke University in Octo-
ber 2023. The program included 11 techni-
cal talks, by speakers from NSF, Duke Uni-
versity, UC-Irvine, Colorado State University,
Virginia Tech, Johns Hopkins, and ISL Inc.

2023 Mini-Symposium on Data Driven
Optimization of Spectrum Sharing Networks

Duke University, Durham, NC
Oct 24, 2023


