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1. Overview
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Challenges: General mathematical framework to integrate new technologies, e.g. UAVs and RIS, and utilize the new
degrees of freedom for resilient coexistence of communication and radar over shared spectrum.
Observation: Avoiding interference between users at all times is too conservative in the wake of increasing demand
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for throughput and dual communication and sensing functionality. A
Solutions: A new paradigm in which we move from hard deterministic constraints to stochastic schemes with desired | g
low probability of harmful interference. Developing a stochastic optimization framework for resilient spectrum sharing “\“51 %"

in a communication network that includes new technologies like RIS and UAV. Extending the framework to include
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coexistence of communication and radar. TS Rl

3. Dual-Functional Radar-Communication
2. UAV Corridors in Cellular Networks

[ Beamforming with Qutage Probability
Goal: Optimize the average SINR across both [ Constraints
UAVs and terrestrial g.round—users. System Model: K single-antenna users, a base
Performance Function: station with /N antennas, and imperfect channel
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st pp < pPrnax VR EA{Ll, - N} _ Objective Function: We aim to find K
Where pn iS the BS n's transmission power and Figure: Optimized cell partitioning of GUEs and UAVs (1 = v = 0.1). beamformers fOr minimizing the mean square €rror
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Figure: Optimized vertical tilts 7 for: GUEs only (o« = 1, green triangle), UAVs only ’ N
= (0, blue circle), and both (o = 0.5, red .
(cv ue circle), and both (« red cross) Pf[SINRk Z ”yk] Z 1 — P VEk - {1, ooy K},
1.0 \ . - - = — . . . .
. e where L is the number of grids, ¢(6) is the desired
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Figure: lllustration of a cellular network with downtilted and uptilted BSs providing | | y | T :2: ::::::gz Solution: Write the proba blllSth constraints In
coverage to ground users as We” as UAVS ﬂylng along corridors (blurred gray). 0.9 oot ’::' ';::;:,’ s r=0.5: SINR at Qy . . . .
o | o S | el ik st terms of the error function and solve a semidefinite
S. Karimi-Bidhendi, G. Geraci, and H. Jafarkhani, “Optimizing Cellular 005 REENA £ L1 i3 = ) _ _
Networks for UAV Corridors via Quantization Theory,” Revision submitted, SINR (dB) programming (SDP) with a penalty term that
Apr. 2024. Figure: CDF of the SINR (dBm) at UAVs (dash-dash) and GUEs (solid) when the k-1 luti
network is optimized for GUEs only (o = 1), UAVs only (o = 0), and both (o = 0.5). ensures rank-1 sofutions.

4. Stochastic Optimizations and Approximate Solutions

Dynamic spectrum allocation: Optimally choose a string (sequence) of spectrum allocation
policies to maximize a desired spectrum usage utility function over time. The problem can be
transformed as a string-optimization problem:

maximize f(.5)

subjectto S € T

where f is the utility function that we wish to maximize (e.g., expected throughput or negative
expected latency), T is the set of all permissible strings of spectrum allocation policies over time
horizon of K allocation steps. An element of T is a sequence of policies.
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A policy is a posterior density over the action space (permissible spectrum allocations) given the
current state of the network (current allocations and (probabilistic) interference constraints).
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Greedy strategy: Determining the optimal string of policies becomes computationally intractable
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with increasing size of state/action space and optimization horizon. Therefore, we often have to -7

resort to approximate solutions. The most common approximation scheme is the greedy strategy, in I e ey T GNRTheshod(ainae |

which we sequentially select the policy that maximizes the increment in the utility function at each Figure: 100 Monte Carlo simulations of (Left) Beampattern for 2 users, N = 5 antennas,
_ _ _ pr = 0.02, and different values of SINR threshold; (Right) Beampattern MSE for p;, = 0.001

step. But how good is the greedy scheme relative to the optimal scheme? and different values of error in channel estimation

Performance bound: We have derived a ratio 5. Outreach Activity

bound for the performance of greedy scheme relative (G
to the optional scheme. The bound guarantees that F(Ox) > p, with § =

f(Gk)
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Zkzl MaXseS(G)_1) f(S) timization of Spectrum Sharing Net-

the greedy scheme achieves at least a factor of 5 of ' Sharir
works, held at Duke University in Octo-

the optimal scheme. ber 2023. The program included 11 techni-
B. Van Over, B. Li, E. K. P. Chong, and A. Pezeshki, Derivation of the bound does not require cal talks, by speakers from NSF, Duke Uni-
y | | _ - o o : : : versity, UC-Irvine, Colorado State University,

On Bounds for Greedy Schemes in String Optimization submodularity of f and [ is easily com- Virginia Tech, Johns Hopkins, and ISL Inc.

based on Greedy Curvatures,” submitted to IEEE CDC putable.
2024, Mar. 2024 (invited paper).
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