

Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking

> Pls: Zhuo Lu and Yasin Yilmaz at University of South Florida (Project# 2029875) Jie Xu at University of Miami (Project# 2029858)

Project Objectives

Impact and Detection

This goal of this project is to identify and investigate new security vulnerabilities associated with existing cooperative spectrum sensing designs, called **adversarial spectrum learning**, and create new adversarial spectrum learning **mitigation**,

Attack success ratio:

Attack successes / # attack attempts
Overall distribution ratio:
Attack successes / # time slots elapsed
• as attacker may decide not to attack due to low accuracy evaluation

defense and management mechanisms for wireless networks.

Background

 Malicious nodes know both spectrum data used for the spectrum access decision and the final decision at the same time. So they train a machine learning model by using the spectrum data as the input and the decision as the output to steal the defense model **Attack detection intuition:** a falsified sensing report created by adversarial spectrum would be close to the decision boundary. Thus, its distance to the decision boundary would be small.

Attack detection idea: design a decision to decision boundary (DDB) statistic over a time period as an indicator measure for attack detection.

It is unclear what is a decision boundary in an AI-based spectrum sensing availability detector. Existing machine learning approaches to iteratively find the DDB: (i) DeepFool, (ii) LBFCG, and (iii) C&W

- In machine learning domain to handle image data generally
- Not optimized for wireless/spectrum applications

Our detection approach is to combine machine learning and wireless modeling to approximate the DDB by searching along a direction predicted by an LLR test built upon the wireless sensing data modeling.

Detection Performance:

 Comparable performance to DeepFool, C&W, and LBFGS.

Threat Model: The attacker builds multiple surrogate models
 {*Si*} to learn and decide how to create adversarial examples
 based on internal accuracy for each model.

- **Computational Efficiency** (Time used to find the DDB):
- 71% DeepFool, 8% C&W, and 2% LBFGS.

Mitigation and Management

- Influence Limiting: instead of offering a hard decision rule to clearly classify a node into either innocuous or malicious, we design a soft rule to discriminate certain nodes in the final decision by the fusion center.
 - When a node's signal strengths exhibit different properties during the training and testing (or decision) phases, we aim to limit its influence on the global decision at the fusion center.

Broader Impacts

Course materials of machine learning / adversarial machine learning and adversarial spectrum learning in wireless networking

Results at IEEE/ACM SEC -EdgeComm, ACM WiSec-WiseML, IEEE DySPAN, IEEE INFOCOM, and IEEE Trans Mobile Computing

Two female Ph.D. students have been involved. Organized lab tour for HBCU undergraduate visitors.

- Multi-Armed Bandit based Adversarial Spectrum Management: instead of using a predetermined threshold function for the influencelimiting policy, we use multi-armed bandits to learn the optimal threshold function
 - In each timeslot when a set of nodes send their sensing data to the fusion center, the fusion center picks a threshold function depending on the contextual information of the data.

