NSF CNS 2332721/2332722 Jan 2024 – Dec 2026

א<u>יא א</u> 12 איי M

Institute for the Wireless **Internet of Things** at Northeastern University

Collaborative **DASS: Dynamically** between Ground Communic Satellite Systems Andread Calibration Target

Northeastern University

Josep M. Jornet, Michele Polese, Tommaso Melodia, Michael Marcus, Vitaly Petrov, Paolo Testolina, Ahmad Masihi, and Sergey Petrushkevich

> Terahertz Communications and Networks, Spectrum Sharing, RFI Modeling

> > Transmitter

xploration

Colorado State University

00-182 GHz rower Divider

Steven C. Reising and Chandrasekar Radhakrishnan

Receiver 43 m 123.5-140 GHz Elevation angle θ [deg]. 210-225 GHz 400^{0}

Passing Sensing instruments from GHz to **Terahertz and Observational Algorithms for the** Earth's Atmosphere and Oceans

Project Goal

Transform how terrestrial wireless communication infrastructure and satellite-based sensing systems share the spectrum above 100 GHz

鼺

Project Thrusts

Experimental Evaluation of RFI to the Orbiting **TEMPEST-H8** Sensor **RFI Model** from Large-scale Terrestrial 6G Networks and Comparison with Measurements

Interference Mitigation and **Co-Design** of Next-Generation Terrestrial and Satellite Systems

Large Scale RFI Modeling

P. Testolina, M. Polese, J. M. Jornet, T. Melodia and M. Zorzi, "Modeling Interference for the Coexistence of 6G Networks and Passive Sensing Systems," in IEEE Transactions on Wireless Communications, early access

Experiment Setup: RFI Characterization at 165 GHz

Tracking the TEMPEST-H8 Sensor on the ISS

Predicting the ISS orbits over the Boston area with elevations above 15. degrees – this corresponds to the TEMPEST-H8 sensor measuring samples over the area where the transmitter will be deployed

TeraNova platform automation

- Rotating plane in azimuth and elevation
- APIs that match ISS orbit
- Different backend waveforms to test different **RFI** profiles

Link Budget Analysis

- Profile received power at EESS sensor (a.k.a. RFI)
- Understand TX power and TX antenna gain configuration
- Profile loss due to misalignment during tracking
- Avoid damaging the sensor by remaining within safe operating conditions

Impact of misalignment and elevation angle on RFI

TX pattern based on antenna manufacturer datasheet