
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning

This project is introduced to design and demonstrate a cutting-edge system for achieving spectral situational awareness 

through radio frequency (RF) machine learning (ML). The primary goal is to obtain actionable spectrum intelligence, a deep 

understanding of waveform characteristics, spectral content, and modulation techniques. Sub-6 GHz legacy band is 

considered as the main area of focus, which has gained significant attention due to recent FCC auctions around 3.5 GHz. 

This emphasizes the economic imperatives driving the need for robust access to legacy bands. The core objectives of the 

project will address an improvement factor of at least 10x real-time throughput over software-based signal awareness and 

spectrum sensing systems using new AI-chip technology and will enable cognitive radios with resilient, autonomous 

dynamic spectrum access.
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Wideband Multi-Beam Spectrum Sensor System Design

Possible approaches: design of AI spectral awareness sensor which addresses goals of Theme A and Theme B.

• Enhancement of bandwidth

• Reduce algorithm complexity 

• Use of latest technologies

Wideband Multi-Beam Spectrum Sensors with AI/ML Perception

Low-complexity Structured Neural Network (SNN) Architecture for Multi-beam Beamforming

Broader Impacts

Introduction

Design goals and research objectives

Two themes : Theme A and Theme B.

• Theme A: Spectrum Adaptability: Network resilience through life-long learning at a contested and congested spectral 

interface.

• Theme B. Mixed-Signal Circuits and Components: Robust, energy-efficient, and high-performance AI chips for real-time 

lifelong learning at the radio-edge for real-time spectrum management and mitigation/measurement of harmful radio 

frequency interference (RFI) to passive

A neural network architecture was proposed to realize multi-beam beamforming using structure-imposed weight 

matrices and submatrices.

•The structure as well as the sparsity of weight matrices and submatrices are shown to greatly reduce the space and 

complexity of the proposed network.

•The proposed neural architecture has O(Mp2L) complexity compared to a conventional fully connected L-layers of 

network with O(M2L) complexity, where M is the number of nodes in the input and output layers, p is the number 

of submatrices per layer, and M >> L, p.

•Numerical results show that the proposed architecture shows faster convergence without sacrificing the accuracy.

Forward & Back propagations of the SNN for Multibeam Beamforming

Numerical Results of the SNN model

Performance and Validation Results of the SNN

AI-Driven Semantic Spectrum Segmentation

• PI Restuccia is expanding the Young Scholars Program for K-12 students and UPLIFT program for 

undergraduate researchers at Northeastern university

• 1 Journal paper and 2 conference paper publications

• 2 female PhD students are working on the research

Figure 1: Proposed AI-accelerated Spectral Awareness Sensor

Figure 2: (a) Detection of spectral white spaces in 3-D (direction, time, frequency) space. (b) Experimen- tal setup of a 5.8 GHz 32-element approximate-DFT (ADFT) digital multi-

beamformer, designed and built in Madanayake’s RAND lab at FIU [1,2]. (c)-(d) Measured beam from (b): (c) ADFT, (d) fixed-point FFT. (e) Xilinx RF-SoC based ZCU-1275 platform at FIU.
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Figure 3: 2 level subbanding and maximally decimated uniform DFT polyphase 

filter bank

Implementing high speed data communication using multi-Gigabit transceiver links across multiple FPGAs

Figure 5: Experimental Setup: two ZCU111 RF SoCs connecting to a 

VCU129 board for implementing high speed data communication

Conventional methods use

• non-real-time processing

• high computational power

Current work: hardware architecture will enable real-time 

processing  of incoming RF signals

Two level RF system on chip architecture to handle higher bandwidth

• Level 01 -RF level subbanding (16 GHz real-time within 24 GHz 

range)

• Level 02 – Fabric level parallelization

After level 01 subbanding, sampled signal with 1MHz bandwidth is 

made available across 8/16 channel

Proposed architecture -

• Use of maximally decimated uniform DFT polyphase filter bank -

FIR filter bank with integrated fast Fourier transform 

for channelizing the 1GHz ADC signal to multiple sub bands

• Output of the filter bank - 32 channels 

• AI ML algorithm is operating at 62.5 MHz clock

Deep belief network/Convolution neural network architectures will 

be used for spectrum intelligence - Extract information that helps 

improve spectrum utilization such as modulation type and direction 

of arrival.

Figure 4: a) The 16 GHz band across FR1-FR3 consists of 16 1 GHz subbands chosen 

for AI/ML perception. The subbands are assigned to 16 optimized antennas (span 

100 MHz-24 GHz); aggregate bandwidth is 16 GHz. Both ZCU-1275/1285 (16 

channels) or ZCU-111 (8 channels) can be used for fast processing with 32 Gbps 

Serdes for connectivity to other systems. b) ZCU-1275 RF-SoC evaluation board

• Multi-Gigabit Transceivers/ Multi-Gigabit SERDES is a technology 

that receives parallel data and enables the transportation of high-

bandwidth data over a serial link minimizing the number of I/O 

interconnects.

• Ability to connect multiple FPGA systems at high speed is 

useful for establishing multi-FPGA backends for transporting 

beamformed and processed channelized signal information.

• First stage completed: Established successful links with a line rate of 25 

Gb/s connecting two Zynq UltraScale+ ZCU111 RFSoCs with the 

Virtex UltraScale+ VCU129 FPGA board using SFP28 connectors.
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Figure 6: ML-based architecture of multi-beam beamforming: In the offline training, we train the 

neural network to align the input data by the weight matrix to the desired output data. In real-

time deployment: RF signals from the antennas and low noise amplifiers (LNAs) are beamformed 

utilizing the structure imposed neural network, i.e., SNN. Once the multibeams are formed they 

will be sent to the digital processor

Figure 7: SNN architecture for predicting DVM-vector product having N neurons in 

the encoding layer (i.e. complex input vector x˜ ∈ C N), 2N neurons in the input layer 

(separating real-vales and imaginary parts of the input vector x˜ giving 2N neurons in 

the input vector x ∈ R 2N ), 4pN neurons in the hidden layer, where p, N ∈ Z + and p 2 

submatrices appearing in the weight matrices between hidden layers, and 2N 

neurons in the output vector y ∈ R 2N resulting the beamformed vector y˜ ∈ C N .

Figure 8: The figures (a) and (b) show training and validation results of the SNNs based on the different elements of antenna arrays, i.e., N = 2, 4, 8, · · · , 256. These graphs are obtained 

referencing the ”Models” listed in Table I. When training ANN and SNN models for 200 epochs, they converge to MSE values of 10−4 and 10−2, respectively. This shows that there is a 

challenge in maintaining the complexity and accuracy simultaneously. Thus, to obtain the MSE with the accuracy of 10−4, we trained the SNN for 400 epochs. These graphs are 

obtained using Python (Version-3.10) along with the TensorFlow (version- 2.0) framework and compiled with Adam optimizer.

a) Training Performance b) Validation Performance
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TABLE I: This table shows MSE values having different elements of antenna arrays. These 

values are obtained using codes written in Python (Version-3.10) along with the 

TensorFlow (version-2.0) framework, and compiled with Adam optimizer. The term 

”Model” consists of three numbers representing nodes in input, hidden, and output layers. 

The notations p and λ denote the number of submatrices and recursive steps, respectively. 

The last column shows the percentage of savings on utilizing SNN over ANN.

TABLE II: Addition and Multiplication counts(FLOPs) for the SNN and fully connected 

neural network, i.e., FLOPs: = #a(SNN) + #m(SNN). The second and third column values 

are obtained using codes written in Python (Version3.10) along with the TensorFlow 

(version - 2.0) framework. We note here that the third and fourth columns show the 

same numerical values, and hence conclude the coincident of the theoretical results in 

equations (15) and (16) with the numerical simulations. The last column shows the 

percentage of the savings on utilizing SNN (executing λ < r recursive steps) over ANN.

N Model/ Weights(ANN) MSE (ANN) Model/ p/ λ/ Weights(SNN) MSE (SNN) Pr(Weights)

2 (4, 8, 4)/76 7.3790× 10−14 (4, 8, 4)/1/2/76 1.1183× 10−10 0%

4 (8, 16, 8)/280 9.8138× 10−11 (8, 16, 8)/1/3/168 2.5357× 10−5 40%

8 (16, 32, 16)/1072 9.6169× 10−6 (16, 64, 16)/2/4/344 3.9557× 10−4 67%

16 (32, 64, 32)/4192 1.8101× 10−4 (32, 64, 32)/1/2/1344 7.1806× 10−4 68%

32 (64, 128, 64)/16576 2.9902× 10−4 (64, 128, 64)/1/2/4736 1.0074× 10−3 71%

64 (128, 512, 128)/131712 6.7401× 10−4 (128, 512, 128)/2/2/35200 7.7334× 10−5 73%

128 (256, 1024, 256)/525568 4.8125× 10−4 (256, 1024, 256)/2/2/135936 4.3494× 10−4 74%

256 (512, 4096, 512)/4198912 1.2377× 10−3 (512, 4096, 512)/4/2/1067520 6.5466× 10−4 75%
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Pr(FLOPs)

2 136 132 132 3%

4 528 312 312 55%

8 2080 1440 1440 46%

16 8256 4640 4640 44%

32 32896 17472 17472 47%

64 262656 135424 135424 48%

128 1049600 532992 532992 49%

256 8392704 4229120 4229120 50%
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