



# **Collaborative Interference Cancellation** for Radio Astronomy

Aveek Dutta<sup>1</sup> Dola Saha<sup>1</sup> Gregory Hellbourg<sup>2</sup>

 $^1$  Award # 2128581, Department of Electrical and Computer Engineering, University at Albany, SUNY <sup>2</sup> Award # 2128497, Department of Astronomy, California Institute of Technology



### **Motivation**

- Necessary to use spectrum beyond current allocation for astronomical observations Redshifting of signals
  Wideband radio astronomy (continuum, spectroscopic, and pulsar)
- Radio Frequency Interference (RFI) is unavoidable in congested spectrum allocation
- RFI removal is done by spatial filtering or excision Significant data loss (40% in L Band)
  Reduces sensitivity of telescope
  Loss of astronomical signal



It is critical to **cancel RFI** at the telescope through a measured interference metric at the communication network and **bidi**rectional collaboration to facilitate coexistence between the xG networks and radio telescopes.

#### Low Overhead Multi-Source RFI Cancellation [4]

• RFI characterization based on Karhunen Lòeve Transform (KLT) [1]. • Overhead reduction based on incident power in time and frequency. • Signal recovery using inverse KLT and successive cancellation.



- Distributed/federated learning of RFI and aggregate local characterizations.
- *Cancel* incident RFI at the telescope using the aggregated interference metric.
- Actively Collaborate with bidirectional exchange of control parameters in real-time.
- Validate with experiments at Owens Valley Radio Observatory with DSA-110.

#### DSA-110 at Owens Valley Radio Observatory



Total 110 dishes, 95 of them are in a Tee-shaped core for searching FRB, with 15 outriggers. Dish diameter - 4.65 m; Frequency band 1280 – 1530 MHz.

## Radio Telescope with respect to Earth.

Figure 10. EPFD above detrimental threshold at telescope elevation of  $90^{\circ}$ 

Figure 11. EPFD above detrimental threshold at telescope elevation of  $20^{\circ}$ . Figure 12. % data loss due to OOB emissions from LEO 5G-NTN satellites operating at 1525-1559 MHz.

#### **Future Research**

• Controlled RFI injection in 1420 MHz (experimental FCC license pending) for ground truth. Practical implementation via ORAN integration and open APIs.

#### **Intellectual Merit**

- 1. Fast neural networks with domain knowledge for orthogonal decomposition of signals.
- 2. Topology aware, distributed learning across small and macro cells of the cellular network.
- 3. Bidirectional collaboration between cellular network and radio telescope to cancel RFI using computationally efficient neural network based orthogonal projection of the kernel spaces.

#### **Broader Impact**

#### **Temporal and Spectral Characteristics**



- **Enable science and connectivity for the society** by enhancing protection to the radio astronomy science from detrimental RFI to improve the sensitivity of next-generation radio telescopes.
- 2. Bridge between radio astronomy and wireless communication community, initiating a platform for conversations among both groups of researchers.
- 3. **RFI dataset and NN models** will be available to wireless communication and the radio astronomy research communities for repeatable research.

#### **Publications**

- Maqsood Careem, Shuvam Chakraborty, Aveek Dutta, Dola Saha, Gregory Hellbourg, "Spectrum Sharing via Collaborative RFI Cancellation for Radio Astronomy", in IEEE DySPAN 2021 [BEST PAPER AWARD].
- 2. Shuvam Chakraborty, Gregory Hellbourg, Maqsood Careem, Dola Saha and Aveek Dutta, "Collaboration with Cellular Networks for RFI Cancellation at Radio Telescope", in IEEE TCCN 2022.
- 3. Shuvam Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, "LOCI: Learning Low Overhead Collaborative Interference Cancellation for Radio Astronomy", in IEEE ICC 2023.
- 4. Shuvam Chakraborty, Dola Saha, Aveek Dutta and Gregory Hellbourg, "Low Overhead Multi-Source RFI Cancellation", in IEEE DySPAN 2024.
- 5. Sirajum Munira, Dola Saha, Gregory Hellbourg and Aveek Dutta, "Dynamic Protection Zone for Radio Astronomy", in IEEE DySPAN 2024.

#### National Science Foundation (NSF)

#### 2024 SWIFT Annual PI Meeting, Washington DC

#### adutta@albany.edu, dsaha@albany.edu, ghellbourg@astro.caltech.edu