Advancing RAN Slicing with Offline Reinforcement Learning

Shen*

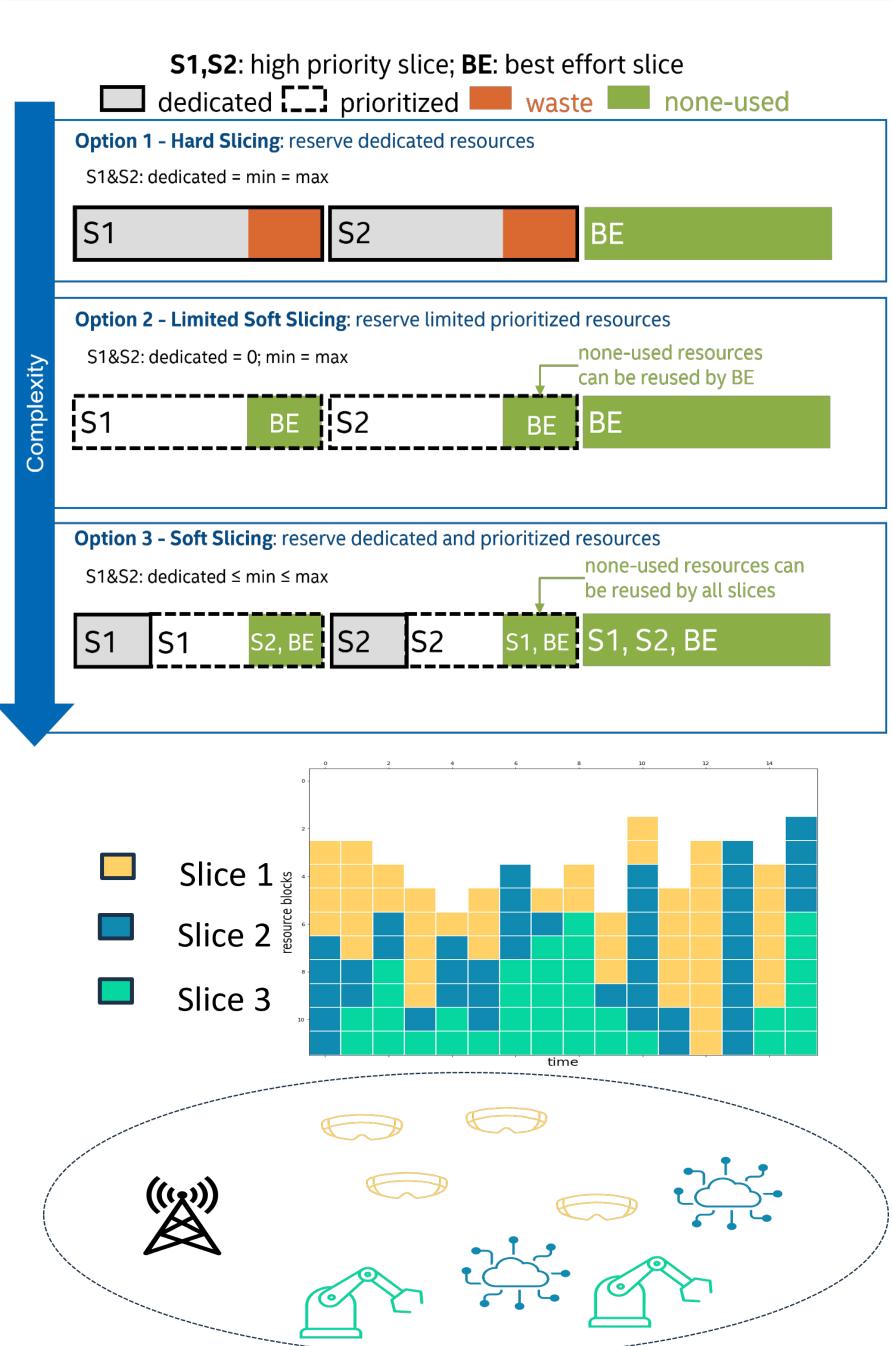
* University of Virginia, ‡ The Pennsylvania State University, ^ Intel Corporation

Motivation

- RL can solve sequential decision-making problems like RRM
- Network slicing is designed to handle different services -> create heterogenies data.
- Traditional methods struggle to adapt between distinct services.
- Online RL needs extra exploration and training for a new environment/service requirement.
- Data with good coverage (hetero data sources) can help offline RL training.

Slice Type	Data Rate	Capacity	Lat
eMBB	Very High	High	L
URLLC	Moderate	Moderate	Ulti
mMTC	Low	High	Мо

Environment Setting



•Two prioritized slices •One best effort slice (Background) •1 Cell with 30 users: Service Level **Agreement (SLA)**: Reduce delay violation rate Maintain received (rx) traffic •Objective: Allocate resource blocks for prioritized slices

Meet SLA

Kun Yang*, Shu-ping Yeh^, Menglei Zhang^, Jerry Sydir^, Jing Yang‡, and Cong

tency

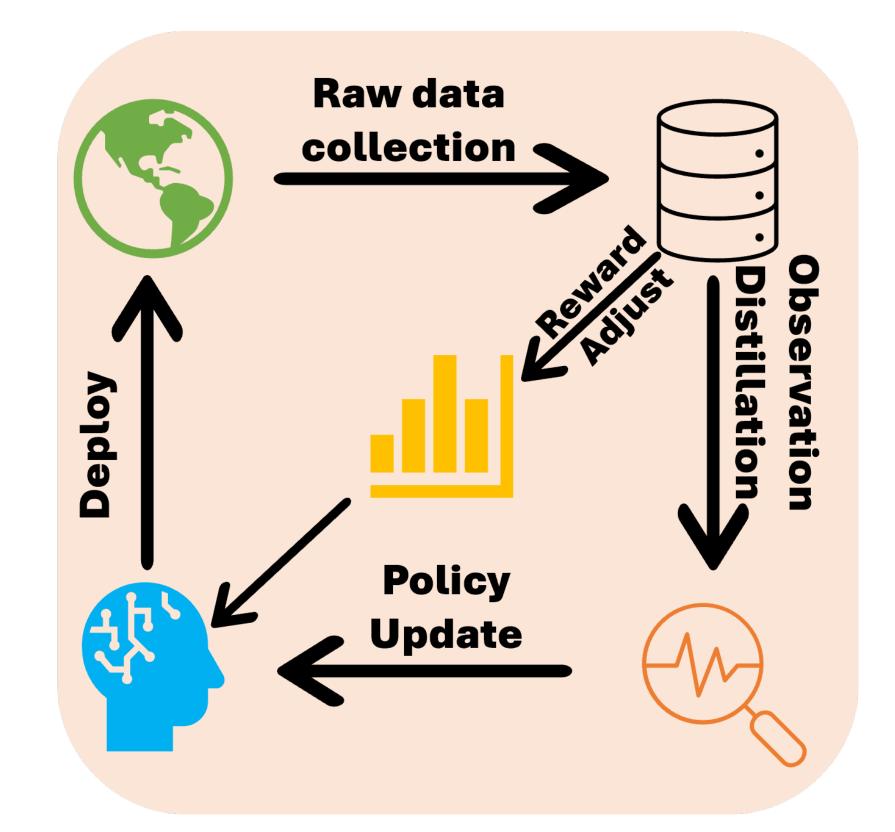
LOW

tra-low

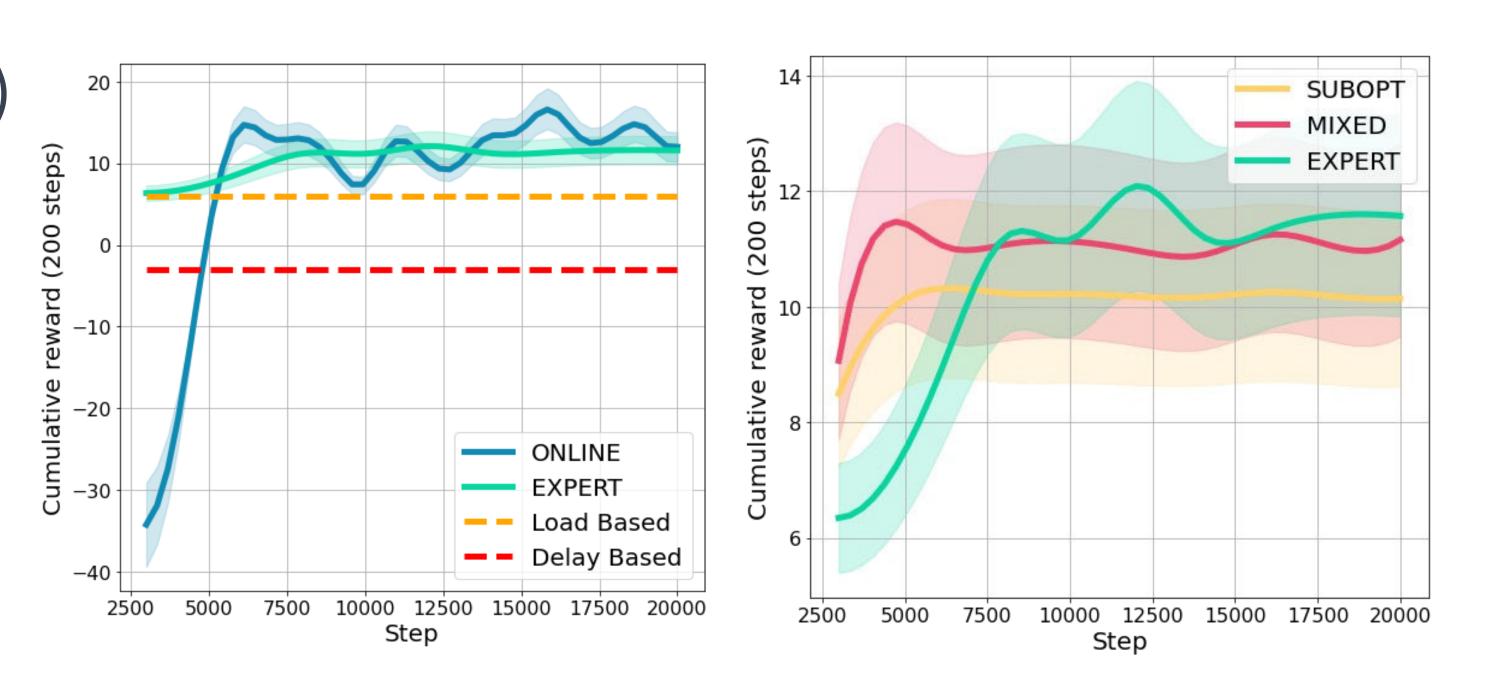
oderate

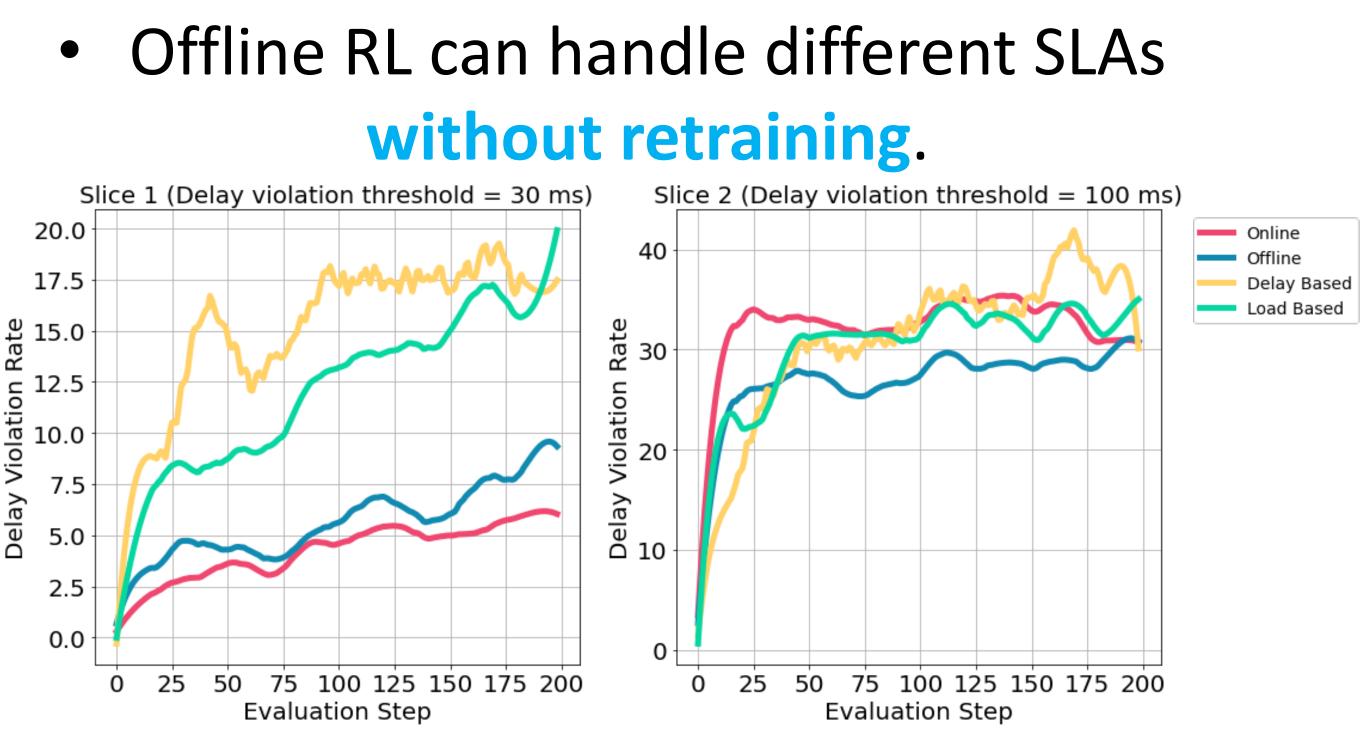
Experiment Process & Result

* Observation distill & reward adjustment enable *flexibility*



- Training from *pure expert data* can help offline RL outperform the online behavior policy.
- With mixed suboptimal datasets, the offline RL recovers online RL performance.





With *reward adjustment*, offline RL can retrain policies to handle different SLA requirements.

SLA	Delay	Total	Resource
requirement	violation rate	Throughput	Usage
Delay	6.5 ± 3.5	52.48 ± 13.65	49.15
Throughput	9.1 ± 4.4	58.68 ± 11.23	49.35
Resource	7.3 ± 4.1	51.44 ± 12.68	48.89

Conclusion & Future work

- mixed suboptimal dataset.
- different SLA without retraining?

SCHOOL of ENGINEERING & APPLIED SCIENCE

Charles L. Brown Department of Electrical and Computer Engineering

Adjust SLA and Objective

• Offline RL is able to recover online-level policies with

• With reward adjustment and observation

distillation, offline RL can adjust to different SLAs without additional data collection. • Future question: Can offline RL algorithms handle

Acknowledgement

The work is partially supported by the US National Science Foundation under awards SWIFT-2029978 and SII-2132700