
The training process will include a synthetic signal and noise generator. The noise 
generator will be based on central frequency, noise intensity and continuum propagation to 
simulate real conditions. The signal will be constructed using the water vapor absorption 
model proposed by Cruz-Pol et al [9] with variations on Center absorption frequency 
strength, continuum absorption strength and curve width. These variations have the 
purpose of simulating the current radiometer calculations of Brightness temperature and 
will be the foundations of the training dataset References
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Abstract
Water vapor is a greenhouse effect gas vital for atmospheric 

predictions. We use microwave radiometers to obtain water vapor 
profiles from the atmosphere by calculating brightness temperature, 
which reflects the energy absorption at specific frequencies, 
especially between the 22-30 GHz (K-band) range where the 
absorption rate of water vapor is higher. We propose advances on 
using autoencoders interferences in order to obtain clean water 
vapor profiles. The methodology involves an experiment on four 
different architectures (Convolutional, Sparse, LStM and Variational) 
to test performance and choose the best one. An experiment was 
designed to measure the impact of interference on water vapor 
profiles.
Problem and Hypothesis

The problem addressed in this proposal is how to determine the 
performance of denoising autoencoder architectures for Radio 
atmospheric radiometric measurements on K-band frequency. 
Different methods have been used to address the various types of 
RFI [1]. Statistical analyses have been used  to detect sporadic RFI 
[2], while specialized algorithms in the polarimetric and frequency 
domains have been used to tackle continuous RFI. However, RFI 
sources are expected to grow for the water vapor observation bands 
due to the increasing congestion of radio signals[3] and regulatory 
constraints related to FCC-licensed bands as shown in Table 1. 
Current methods and techniques not always are able to detect 
domain-specific interferences due to the limitations of their scope.
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We have identified RFI at 28 GHz in radiometric measurements 
captured locally by comparing them with the expected water vapor 
absorption behavior over the observation frequency range, 
illustrated on Figure 1. 

Expected Results
● A Better understanding of the effect of RFI on radiometer data in 

K-band measurements for water vapor profiles.
● A Detailed knowledge of the effectiveness of autoencoders and 

neural networks in RFI detection and mitigation.
● A working model for RFI mitigation in K-band data deployed on 

the radiometer computer to actively remove interference.

Objectives
The main objectives of this research include:
● Studying the impact of different types of RFI on the water vapor measurements obtained 

with a microwave radiometer
● Exploring the use of deep learning models to detect and mitigate different types of RFI in 

the operation of microwave radiometers.

Why Deep Learning?
Previous studies have shown that deep learning models can surpass classical methods 

concerning signal-to-noise (SNR) ratio and area-under-curve for 
Receiver-operating-characteristic (AUC) in similar RFI approaches. Deep learning have 
advantages over traditional methods because of: data-driven approach, adaptability and 
automation [4]. Previous work published by Ristea et al [5] and Sun et al [6] showed 
significant improvement with respect to SNR (144.78%), AUC (2.1%) and precision (9.3%).

Future Work
● Studying the interference impact on water vapor profiles based 

on an experiment injecting different types of RFI. 
● Implementing the autoencoder architectures and train with 

synthetic noise added to rfi-free radiometer readings.

Methodology
Autoencoders are models in deep learning that map input data to an internal 

representation called the latent space, produce output similar to the input data by applying 
transformations and filtering techniques, explained in figure 2[8]. The proposed 
methodology includes the comparison of four different autoencoder architectures 
(Convolutional, Long-Short Term Memory, Sparse and Variational) illustrated in figure 3.

Lease ID in 
FCC

Lower bound 
(GHz)

Upper bound 
(GHz)

Collides with radiometer 
channel? (Yes/No)

WRES540 24.25 24.35 No
WRES823 24.35 24.45 No
WRET265 24.75 24.85 No
WRET534 24.85 24.95 No
WREU655 24.95 25.05 Yes
WREU940 25.05 25.15 No
WREV411 25.15 25.25 No

WRBC252 27.925 28.35 Yes
WPOJ996 29.1 29.25 No
WPOJ996 31.075 31.225 No

Table 1: Licensed frequency ranges in Mayag ̈uez for K bands
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Figure 1: RFI found at 28 GHz in K-band 

Figure 3: Model Training Architecture 

Figure 2: Basic autoencoder architecture 

Figure 4: Experimental Design for RFI injection 

We will use the R&S SMW200A signal generator to inject and 
adjust the intensity, center frequency, duty cycle, and 
modulation to determine which ones most significantly influence 
the accuracy of the radiometer, illustrated on figure 4. This 
parameters will define a full-factorial experiment design.


